CURVES AND SURFACES WITH CONSTANT CURVAURE IN EUCLIDEAN SPACE

I. Curves with constant cuvaure in Euclidean space

At each point there are often lines with a constant bend. Let's consider lines on the plane and in space that have this property.

1) Circle. Let's write a circle parametrically and calculate its bend at any point $\mathrm{M}(\mathrm{t})$.

$$
\mathrm{x}=a \cdot \operatorname{Cost}, \mathrm{y}=a \cdot \operatorname{Sint}, \mathrm{t} \in[0,2 \pi] .
$$

We'll find out. $\mathrm{x}^{\prime}=-a$ Sint, $\mathrm{y}^{\prime}=a$ Cost, and $\mathrm{x}^{\prime \prime}=-a$ Cost, $\mathrm{y}^{\prime \prime}=-a$ Sint.
Then for flat lines, we find the curve expression at any point $\mathrm{M}(\mathrm{t})$:
$\mathrm{k}=\left|\frac{\left|\begin{array}{ll}x^{\prime} & y^{\prime} \\ x^{\prime \prime} & y^{\prime \prime}\end{array}\right|}{\sqrt{\left(\left(x^{\prime \prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{3}}}\right|, \mathrm{k}=\left|\frac{\left|\begin{array}{cc}-a S \text { int } & a \operatorname{Cost} \\ -a \operatorname{Cost} & -a S \text { int }\end{array}\right|}{\sqrt{\left((-a S \text { int })^{2}+(a \operatorname{Cost})^{2}\right)^{3}}}\right|=\frac{a^{2}}{a^{3}}=\frac{1}{a}=$ Const., and radius $\rho=a$.

2) Screw (screw) line.

Definition 1. If a point located in a plane perpendicular to a straight line in space moves along a straight line parallel to a given straight line with a uniform rotation from this straight line, then a line formed from its traces is called a screw (screw) line. The screw line can be defined by the regular Line L given as follows:
$\mathrm{L}: \mathbf{r}(\mathrm{t})=(a \operatorname{Cost}, a \operatorname{Sint}, \mathrm{bt}), \mathrm{t} \in(-\infty, \infty)\left(^{*}\right)$, here a and b are positive numbers. $\left(^{*}\right)$ each point of a parametrically expressed line corresponds to a circular cylindrical surface defined by the equation $x^{2}+y^{2}=a^{2}$ (fig.1). (*) calculate the bending of the screw line at any point M (t) given parametrically. Since $\mathbf{r}^{\prime}=-a \operatorname{Sint} \cdot \mathbf{i}+a \operatorname{Cost} \cdot \mathbf{j}+\mathbf{b} \cdot \mathbf{k}, \mathbf{r}^{\prime}=-a \operatorname{Cost} \cdot \mathbf{i}-a \operatorname{Sint} \cdot \mathbf{j}$ is a vector product $\left.\mathbf{r}^{\prime}, \mathbf{r}^{\prime}{ }^{\prime}\right]=\left|\begin{array}{ccc}-a S \text { int } & -a \cos t & i \\ a \operatorname{Cost} & -a S \text { int } & j \\ b & 0 & k\end{array}\right|=a \mathrm{bSint} \cdot \mathbf{i}-a \mathrm{bCost} \cdot \mathbf{j}+a^{2} \cdot \mathbf{k}$ and $\left|\left[\mathbf{r}^{\prime}, \mathbf{r}^{\prime}\right]\right|=a \cdot \sqrt{a^{2}+b^{2}}$. Then calculate the bending by the expression $\mathrm{k}=\frac{\left|\left[r^{\prime}, r^{\prime \prime}\right]\right|}{\left|r^{\prime}\right|^{3}}$ the bending of the screw at each point of the line: $\mathrm{k}=\frac{a \sqrt{a^{2}+b^{2}}}{\left(\sqrt{a^{2}+b^{2}}\right)^{3}}==\frac{a}{a^{2}+b^{2}}=$ Const $\mathrm{k}=\frac{\left|\left[r^{\prime}, r^{\prime \prime}\right]\right|}{\left|r^{\prime}\right|^{3}}$, and the radius of the bend $\rho=\frac{a^{2}+b^{2}}{a}$

II. Examples of surfaces of constant total and average curvature

Definition 2. A surface F is called a surface of constant total (respectively, average) curvature if at all points of this surface $\mathrm{K}=$ const, $\mathrm{H}=$ const.

Examples.

1) a plane or part of It..
2) Cylindrical and conical surfaces.

Definition. The surface in which the average curvature is zero, are called minimal.

A straight helicoid is a minimal surface.
a) Rotation surfaces. It is known that rotation surfaces are a surface obtained from rotation from a straight line located in the plane of a given line. To write its equation, consider a rectangular coordinate system. let the z increment be the rotation increment. Let P be the plane of a smooth line γ. Let's introduce a rectangular Ouz coordinate system in this plane, where $\mathrm{u}=\mathrm{P} \cap(\mathrm{Oxy})$. let's assume that the γ line is defined in the Ouz coordinate system by the equation $\mathrm{z}=\mathrm{f}(\mathrm{u})$. let's φ denote the angle between the x and the u . When any point $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ rotates around a circle from z , the angle φ changes at [0,2] intervals. Then the parametric equation of the rotation surface \mathbf{F} obtained in the Oxyz coordinate system will be as follows:

$$
\begin{aligned}
& \mathrm{x}=u \cdot \operatorname{Cos} \varphi, \mathrm{y}=u \cdot \operatorname{Sin} \varphi, \mathrm{z}=\mathrm{f}(\mathrm{u}), \text { or } \\
& \mathbf{r}=(u \cdot \operatorname{Cos} \varphi) \cdot i+(u \cdot \operatorname{Sin} \varphi) \cdot j+f(u) \cdot k,
\end{aligned}
$$

here the rank $\left(\begin{array}{lll}x_{u} & y_{u} & z_{u} \\ x_{\varphi} & y_{\varphi} & z_{\varphi}\end{array}\right)=\left(\begin{array}{ccc}\operatorname{Cos} \varphi & \operatorname{Sin} \varphi & f^{\prime}(u) \\ -u \cdot \operatorname{Sin} \varphi & u \cdot \operatorname{Cos} \varphi & 0\end{array}\right)=2$ here the rank $(\mathrm{u}, \varphi) \in \mathrm{G}, \mathrm{u} \neq 0$, must be executed at the point.

On this page, the coordinate lines $\mathrm{u}, \varphi=$ const are meridians, and $\mathrm{u}=\operatorname{cosnt}, \varphi$ it's called parallels. We find: $\mathbf{r}_{u}=\left(\operatorname{Cos} \varphi, \operatorname{Sin} \varphi, \mathrm{f}^{\prime}(\mathrm{u})\right), r_{\varphi}=(-u \cdot \operatorname{Sin} \varphi, u \cdot \operatorname{Cos} \varphi, 0), \mathbf{r}_{\mathrm{uu}}=\left(0,0, \mathrm{f}^{\prime \prime}(\mathrm{u})\right)$,
$r_{u \varphi}=(-\operatorname{Sin} \varphi, \operatorname{Cos} \varphi, 0), r_{\varphi \rho}(-u \cdot \operatorname{Cos} \varphi,-u \cdot \operatorname{Sin} \varphi, 0)$, then the first and coefficients of second
quadratic forms: $\gamma_{11}=1+\left(f^{\prime}(u)\right)^{2}, \gamma_{12}=0, \gamma_{22}=u^{2}, b_{11}=\frac{f^{\prime \prime}(u)}{\sqrt{1+\left(f^{\prime}(u)\right)^{2}}}, b_{12}=0$,

$$
b_{22}=\frac{u \cdot f^{\prime}(u)}{\sqrt{1+\left(f^{\prime}(u)\right)}} .
$$

$\gamma_{12}=0, b_{12}=0$ since lines-meridians and parallels - will be bend lines.
The full Bend will be

$$
\begin{equation*}
\mathrm{K}=\frac{f^{\prime}(u) \cdot f^{\prime \prime}(u)}{u \cdot\left(1+\left(f^{\prime}(u)\right)^{2}\right)^{2}} \tag{**}
\end{equation*}
$$

3) Sphere. In the Ouz coordinate plane, the equation of the meridian of the sphere is $\mathrm{z}^{2}+\mathrm{u}^{2}=a^{2}$, where a-is the radius of the sphere. let $\mathrm{z}=\sqrt{a^{2}-u^{2}}$. Hence, $\mathrm{ff}(\mathrm{u})=\sqrt{a^{2}-u^{2}}$.
Find: $f^{\prime}(u)=-\frac{u}{\sqrt{a^{2}-u^{2}}}, f^{\prime \prime}(u)=-\frac{a^{2}}{\left(a^{2}-u^{2}\right) \cdot \sqrt{a^{2}-u^{2}}}$.
${ }^{(* *)}$ the complete bending of the sphere by equality $K=\frac{1}{a^{2}}=$ const, that is, the sphere is a constant non-negative malleable surface.
4) Pseudosphere. The surface formed by the rotation of the innkeeper's own growth is called the pseudosphere (fig.2).

Parameter equation of the tractor: $\mathrm{z}=a \cdot\left(\ln \operatorname{tg} \frac{t}{2}+\operatorname{Cost}\right), u=a \cdot S$ int , $a=$ const >0. Then, $z_{t}^{\prime}=\frac{a \cdot \operatorname{Cos}^{2} t}{S \text { int }}, u_{t}^{\prime}=a \cdot \operatorname{Cost} . f^{\prime}(u)=\frac{z_{t}^{\prime}}{u_{t}^{\prime}}=\operatorname{Ctg} t, t \neq 0$. Here $(*)$ we find by equality: $\mathrm{K}=-\frac{1}{a}$, that is, the pseudosphere will be a constant negative malleable surface.

Pseudosphere

fig.2.
Cylindrical and conical surfaces of rotation are also examples of surfaces with constant bending, since all points of these surfaces are parabolic, that is, at each point $\mathrm{K}=0$.
5) Helicoid . Calculate the total and average curvature of a straight helicoid.

Parametric equations of the helicoid: \mathbf{F} : $\mathrm{x}=\mathrm{uCosv}, \mathrm{y}=\mathrm{uSinv}, \mathrm{z}=\mathrm{bv}, \mathrm{b}>0$.
Then, $r_{u}=(\operatorname{Cos} v ; \operatorname{Sin} v ; 0), r_{v}=(-u \operatorname{Sinv} ; u \operatorname{Cosv} ; b) \Rightarrow \gamma_{11}=1, \gamma_{12}=0, \gamma_{22}=u^{2}+b^{2}$,
$r_{u u}=(0, ; 0 ; 0), r_{u v}=(-\operatorname{Sinv} ; \operatorname{Cosv}, 0), r_{v v}=(-u \operatorname{Cosv} ;-u \operatorname{Sinv} ; 0) \Rightarrow$
$b_{11}=0, b_{12}=-\frac{b}{\sqrt{u_{2}+b_{2}}}, b_{22}=0 \Rightarrow K=-\frac{b^{2}}{\left(u^{2}+b^{2}\right)}, H=0$.
Definition 3. The surface in which the average curvature is zero, are called minimal.
A straight helicoid is a minimal surface.

Literature

1. V. T. Bazylev, K. I. Dunichev. Geometry -II, M., 1975.
2. L. S. Atanasyan, G. V. Gurevich. Geometry -II, M., 1976.
3. I. Ya. bakelman. Higher geometry, Moscow, 1967.
4. S. P. Novikov, A. T. Fomenko. Elements of differential geometry, Moscow, 1987
5. A.V. Pogorelov. Lectures on diff. Geometry, Kharkiv, 1961.
6. N. V. Efimov. Higher geometry, Moscow, 1961.
